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NUMERICAL METHOD TO CALCULATE THE INDUCED DRAG OR
OPTIMUM LOADING FOR ARBITRARY NON-PLANAR AIRCRAFT

James A. Blackwell, Jr.
Lockheed-Georgia Company

SUMMARY

A simple unified numerical method applicahble to non-planar subsonic air-
craft has been developed for calculating either the induced drag for an arbi-
trary loading or the optimum aircraft loading which results in minimum induced
drag. The method utilizes a vortex lattice representation of the aircraft
lifting surfaces coupled with the classic equations and theorems for computing
and minimizing induced drag. Correlation of results from the numerical method
with non-planar solutions obtained from other more complex theories indicates
very good agreement. Comparison of the induced-drag computations using the
numerical method with experimental data for planar and non-planar configura-
tions was also very good.

INTRODUCTION

Over the past few years, increased attention has been focused on improving
aircraft performance. One method to improve performance is to lower the air-
craft induced drag. This can be accomplished by more efficient desizn of con-
ventional configurations »r by developing new and unique designs whose intent
is to minimize induced drag. Typical of new configurations that have been
developed for this purpose are the Lockheed boxplane and the Whitcomb winglet
configuration.

The aircraft lifting surfaces for conventional aircraft as well as for new
configurations are generally non-planar in design. To achieve a minimum in-
duced d.rag, these non~planar surfaces must be designed to support the required
optimum loads as specified by classical theory (refs. 1 and 2). Unfortunately,
the use of classical theory to determine the design loads is quite cumbersome
since rather complex conformal transformations must be utilized. Thus, a
simple inexpensive method is required to determine what the 'design to'" loading
of a no.-planar configuration should be to minimize the aircraft induced drag.
Furthermore, for conditions where the aircraft is not operating at design con~
ditions, an analysis method is required to quickly assess the magnitude of the
aircraft off-design induced drag. Also, methods of this type are of particular
importance in making configurational trade-offs.

The objective of this paper is to present a simple unified numerical
method applicable to subsonic non-planar aircraft for the rapid calculation of:
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1. the induced drag for an arbitrary aircraft loading or
2. the optimum aircraft loading which results in minimum induced drag.

The paper will include a discussion of the fundamental theoretical concepts on
which the method is based, followed by the theoretical formulation of the nu-
merical calculation procedure. Computations will be made using the method and
will be compared to existing theoretical solutions and to experimental data.
This will be followed by an illustration of the utility of the method for
making configurational trade-offs by comparing the loading and induced drag
results for various types of wing additions such as winglets or wing-tip
extensions.

SYMBOLS
Aij geometric influence function
AR aspect ratio, b?/S
b reference span
c local chord of lifting surface
cav average chord (S/b)
¢n section load coefficient normal to load perimeter
CL lift coefficient
CDi induced drag coefficient
Cws bending-moment coefficient
Di induced drag (Dj =CDi qS)
e efficiency factor
F resultant ferce of lifting surface
h length of wing addition
k unit normal vector parallel to Z axis
L length of load perimeter
L lift force (L=Cp qS)
M Mach number
50
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Superscript:
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number of lifting elements on load perimeter
unit vector normal to load perimeter

section load normal to load perimeter (N=q c, c)
free-stream dynamic pressure

semi-width of vortex pair

nondimensional semi-width of vortex pair (s =2s'/b)
reference area

side force

induced velocities

resultant induced velocity

velocity normal to load perimeter

free-stream velocity

lifting element coordinate system

aircraft coordinate system

aircraft spanwise center of pressure

circulation (eq. (10))

rotation angle in the Y-Z plane

indicates vector quantity

»

number designating a vortex pair that model a particular lifting

element

number designating a control point on a particular lifting element

wing

winglet
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BASIC THEORETICAL CONCEPTS

Fundamental to the development of the present model is the representation
of the aircraft non~planar lifting surfaces by a system of rectangular horse-
shoe vortices (ref. 3). The induced drag for a given loading or the optimum
loading for minimum induced drag can be calculated for any arbitrary non-planar
aircraft at subsonic speeds utilizing this vortex representation and the
following basic law and theorems: Munk's Theorems I to I1I, Biot-Savart Law,
and the Kutta-Joukowski Theorem.

Munk's first theorem (ref. 1) can be stated as follows:

The total induced drag of any multiplane system ts unaltered
if any of the lifting elements are moved in the direction of
motion provided that the attitude of the elements is adjusted
to maintain the same distribution of lif' among them.

This theorem is commonly referred to as Munk's stagger theorem. An illustra-
tion of this theorem is shown in figure 1. Several practical applications can
be deduced from this theorem. First, the chordwise distribution of pressure
does not affect the theoretical induced drag of the aircraft if constant
section 1ift is maintained. Second, wing sweep does not effect the theoretical
induced drag as long as the spanwise distribution of 1lift is constant. A third
application is that the load from a system of multi-surfaces (i.e. wing and
horizontal tail) with the same projection in the Y-Z plane can be made equiva-
lent to a single surface for the purpose of calculating induced drag.

In the following theoretical development, use will be made of Munk's first
theorem to lump the chordwise distribution of vorticity into a single chordwise
load and to translate all loads into the 0,Y,Z plane (fig. 1).

Munk's second theorem (ref, 1) is illustrated in figure 2 and can be
stated as:

In caleulating the total induced drag of a lifting system,
once all the forces have been concentrated into the plane
0,Y,2, we may, instead of using the actual values of the
velocity normal to the lifting elements [Vy(x,y,2)] at the
original points of application of the forces, use one-half
the limiting value of the normal velocity [V,(»,y,z)] for
the corresponding values at points P(0,y,3).

This theorem allows the computations to be done in the Trefftz plane (down-
stream infinity) rather than in the real plane. In the subsequent theoretical
derivation, this fact will be utilized to make all the computations in the
Trefftz plane, thereby greatly simplifying the calculations.

The third theorem given by Munk (ref. 1) is presented as follows:

52

F L SR

o



r—

PR 5

When all the elements of a lifting system have been trans-
lated longitudinally to a single plane, the induced drag
witll be a mintmum when the component of the induced
velocity normal to the lifting element at each point is
proportional to the cosine of the angle of inclination of
the lifting element at that point.

This theorem is illustrated in figure 3 and can be summarized in equation form
as:

Vy = W cos@ (1)

For a horizontal lifting element it can be seen from equation (1) that the
normal velocity (downwash) across the span is equal to a constant (fig. 3). Tor
a vertical plane (6 =90°), the normal velocity (sidewash) must be equal to zero
for minimum induced drag. The physical interpretation of this theorem will be
further illustrated in a subsequent section.

Equation (1) will be utilized in the following theoretical development as
the boundary condition necessary to achieve a minimum induced drag and hence an
optimum aircraft loading.

Tte basic equation for calculating the aircraft-induced drag can be
derived by applying the Kutta-Joukowski theorem in the drag direction. By
virtue of Munk's thenrems, the calculations can be accomplished in the Trefftz
plane rather than the real plane. Thus, the equation for induced drag ex-
pressed in terms of the Trefftz plane variables and using vector notation is:

Dj = 5~ § Venade (2)

Equation (2) along with the induced velocities in the Trefftz plane de-
rived from the vortex model of the lifting surfaces will comprise the basis for
the induced drag computation. A

PHYSICAL INTERPRETATION OF THEORETICAL CONCEPTS

To provide a better physical understanding of the computation of induced
drag and the calculation of the optimum loading for minimum induced drag, the
theoretical concepts discussed in the previous section will be illustrated
using a wing-winglet configuration. 1In figure 4, the sources of induced drag
for a wing-winglet combination are shown. These are:

o Drag due to the induced flow by the wings on the wing

o Drag due to the induced flow by the wings on the winglet
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o Drag due to the induced flow by the winglets on the winglet
o Drag due to the induced flow by the winglets on the wing

For simplicity, the effects of symmetry are included in the sources of induced
drag shown and are not delineated separately.

In figure 4(a), the effect of the wing induced flow is shown. The wing
under positive_load produces a downwash on itself which results in the wing
force vector, F, tilting rearward by an angle aj. The wing force vector, F, is
perpendicular to the resultant, V, (Kutta-Joukowski thecrem). The rearward
rotation of the force vector results in a wing-induced drag. A sidewash is
also produced by te wing at the winglet location. As can be seen in figure
4(b), the sidewash from the wing combined with the free-stream velocity pro-
duces a tilt forward of the winglet force resulting in a thrust component.

In figure 4(c), the induced drag resulting from the sidewash of the win-,-
let on itself is presented. This results in a rearward tilting of the wing’et
force vector and an attendant induced drag. It should be noted that the d’rec-
tion of the winglet force vector is consistent with a positive (upload) or the
wing. The winglet also induces an upwash on the wing. In figure 4(d), it can
be seen that this upwash rotates the wing force vector forward producing a
thrust force.

The results from figure 4 are summarized in figure 5, where all the in-
duced velocities are combined. For minimum induced drag, equation (1) indi-
cates that the velocity normal to the winglet must be equal to zero (6 =90°).
This can be seen to occur when the sidewash produced on the winglet by the wing
exactly cancels the sidewash produced by the winglet on itself. In other
words, the induced angle of attack (aj) of the winglet is zero. The induced
drag of the wing is also minimized by the presence of a winglet since the wing-
let causes a reduction in the net downwash at the wing; and, hence, the induced
angle of attack is reduced.

DERIVATION OF NUMERICAL METHODS

Vortex Model

By virtue of Munk's theorems, the calculations for induced drag and the
optimum loading can be accomplished in the Trefftz plane. This fact consider-
ably simplifies the calculation problem since the method will not be a function
of the longitudinal coordinate. The projection of the aircraft non-planar
lifting surfaces "1 the Trefftz plane will be referred to as the load
perimater.

In the real plane, the aircraft lifting surfaces will be represented by a

system of horseshoe vortices. The equations describing the induced velocities
in the Trefftz plane at a control point P(e,y{,zj) (fig. 6) due to a horseshoe

54

N

§



vortex located in the real plane at a point P(xj,yj,zj) are glven below as de-~
rived from the Biot-Savart Law (ref. 3):

e

v, "¢ (3)

Y _LIohifzt 2z

v, 2 vm(R1 R2> (4)

Y_.L=_1_F_J'_(L-_s_'l__(x;ﬁ).)

Vv, 2m vV R Ry (5)
where

Ry = (2')2 + (y' -s")? (6)

Ry = (2")2 + (y' +s')2 (N

y' = (yy-yj) cosj + (z; -z3) singj (8)

z' = - (yg-yj) sinbj + (z4 - zj) cosd; (9)

and the circulation by virtue of the Kutta-Joukowski theorem is given as

Ts (c c)j
Vl = nz (10)

@

Inspection of equations (3) to (5) indicates that there is no contribution
from the horseshoe bound leg in the Trefftz plane and the induced velocities
are not dependent on x. The resulting model then reduces to describing the
load perimeter in the Trefftz plane (fig. 6) by lifting elements that are
represented by a trailing vortex pair having a circulation of equal magnitude
but of opposite rotation. For each lifting element there is an associated
control point located midway between the pair of vortices.

Induced Drag Calculation

The basic equation for calculating the induced drag for an arbitrary non-
planar lifting system was given in equation (2) as:

1

P17 v

§ Ve NG de

The integral is a circuit integral taken around the perimeter of the pro-
jection of the lifting system in the Trefftz plane. The vector V is the
resultant induced velocity vector in the Trefftz plane from all vortices on the
load perimeter. The vector fi is a unit vector, normal to the load perimeter.
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Reducing equation (2) to coefficient form, nondimensionalizing the lifting
element length (L) by the reference semispan, and using the relationship for
the average chord, the following result is obtained

1§ i (mc 22!

Cog 4§ v, (cAv)ﬁd(b) an
Writing the above in the form of a srm and assuming symmetry about the X-Z
plane

(cp ey [V eos(V,A)];
cAv Ve

1 m
Cp; = 5 Zl A(28/b) 4 (12)

i

where m equals the number of elements that comprise the load perimeter.
Writing equation (1Z) in terms of the nondimensional lifting element semi-
width(s) and noting thac

v, = Vcos (V,7) (13)

the expression for induced drag can be written as

T Vny (eq )y
T
i=1 Ve

The velocities normal to the lifting elements (V,) can be determined by
utilizing the expressions for the induced velocities in equations (4) and (5).

From the geometry of figure 6, the normal velocity at P; due to a vortex

pair at Pj can be expressed in terms of the induced velocities as:

Yng _ Wy i
vm = v Cos (91“6]) - v 51n(6i—6j) (15)

[+ 2] o0

Combining equations (4), (5), (10), and (15) yields the expression for the
total normal velocity at the control point Py due to vortices at all points Py:

Vis m (c . ¢), c [ (y' +s’
Vl- }‘ 2 = 4AV((Y S) - S))COS(ei‘e-)
© j=1 CAV Ui Rl R2 3
CAV (2" 2z
IR : LA . : =0,
A (Rl Rz) 51n(61 eJ)l (16)

The portion contained in curvy brackets is only a function of the projected
aircraft geometry in the Trefftz plane and will be denoted by Aij' Thus, in
terms of the geometric influence function Ayj,
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% Vny m (cp ¢)
= A (17)
Vo jzl Cav 1]

Substitution of equation (17) into equation (14) yields the fiual expres-
sion for the induced drag:

) / m m (cqy ©) (cq ©).
i i
: Cp, = ( )( )()(A) (18)
: Dl i-z-'l jzl CAV CAV Si ij

-

The independent parameters in equation (18) are the loadings normal to the
load perimeter, the lifting element semi-widths, and the geometric influence
function. The loading normal to the load perimeter will be considered input to
the present method. The normal loading can be determined from any available
non-planar lifting surface calculation procedure such as in reference 3 or from
experimental data. The lifting element semi-width is also considered as input.
The geometric influence function (Aj;), as has been previously mentioned, is a
function of the input aircraft geometry.

For an arbitrary applied load, the 1lift can be determined from the follow-
ing expression

L=¢‘Nﬁoﬁd2 (19)

Expressing equation (19) in coefficient form and writing as a sum

m (cn c), _
CL=2 7} (—————1) (s5) cos(fiy, k) (20)
j=1 CAV
Since
cos(ﬁj, k) = cos ej (21) i

the final expression for the lift coefficient is given by

m ((Cn c).

Cay ) (sj) cos ej (22)

CL =2
j=1

The bending-moment coefficient at the X-axis can be expressed as

p (e ©). y Zs
Cup = 3 L (—-Z;;—l S (37% cosfy + E?%‘sinej) (23)

The spanwise center-of-pressure location can be determined from the following
equation:
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Jep , 1WB «,
b/2 - ¢ (24)

The aircraft efficiency factor can be calculated from the following
standard equation:

2
Cp

e.

Optimum Load Calculation

The expression for the total velocity normal to a lifting element was
given in equation (17) as:

v m (cq ©)
T’P-i- = Z ————‘ln Aij
© j-l CAV

According to Munk's theorem III, the loading for minimum induced drag is
obtained when the distribution of normal velocity satisfies equation (1):

Yoy Wo
v V“COSi

©

where w, is a constant. Using equation (1) as a boundary condition and combin-
ing it with equation (17), there results:

m (cq ©)
%— cosfy = ¥ "—_i Ay (26)
4=1  Cav

where the loading in equation (26) is the optimum loading. Using square
brackets to indicate matrix notation, equation (26) can be written as:

(cq ©)
[cosei] = ;Vm [ Aij] [—_22;—1] (27)

Solving for the optimum loading

5] 2] ]

The value of the arbitrary constant, Wy Can be determined from equation
(22) by specifying the aircraft 1ift coefficient.

In summary, to determine the loading for minimum induced drag, only the
1lift confficient and aircraft geometry are required for input. Once the
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loading has been determined, the minimum induced drag, the spanwise center-of-
pressure location, and efficiency can be determined in the manner previously
presented (eqs. (18), (z4), and (25)).

CORRELATION OF METHOD

The theory described in the previous section for calculating the aircraft
induced drag for a given loading or thz: loading for a minimum induced drag has
been coded for use on Lockheed computers. Jn this section, computations using
the present method will be compared to other theoretical solutions and to

experimental results.
Induced-Drag Correlations

Numerical solutions for the aircraft efficiency for a monoplane of aspect
ratio eight are shown in figurc 7 for various values of lifting element widths.
For this example, the widths of the elements over the load perimeter were held
constant. A more efficient result could have been obtained if, for instance, a
cosine spacing of the elements had been used. The input loading on the mono-
plane was specified to be elliptical. The exact solution for the efficiency
factor (ref. 1) on an elliptically lnaded moucplane is, of course, 1.0. As can
be seen, the numerical solution approaches the exact value as the width of the
elements become smaller. For a lifting element width equal to .0l (b/2), the
error was approximately 0.5% in efficiency.

A similar calculation was made for an aspect ratio eight biplane with
wings of equal span and a height-to-span ratio of 0.5. The biplane was loaded
optimally utilizing the loadings derived in reference 1, based on transforma-
tion theory. The numerical calculation for efficiency factor was 1.6307 (using
constant elements of 0.0125(b/2) in width) compared to the value of 1.6260
given in reference 1. The resulting difference was approximately 0.3%.

In figure 8, induced-drag results calculated using the present method are
compared to the experimental results for an advanced Lockheed transport de-
signed to cruise at 0.95 Mach number and at a lift coefficient of 0.47. The
spanwise loading for the aircraft was obtained from an available 1lifting
surface program similar to that in reference 3. As can be seen, the agreement
between theory and experiment is very good over a range near the design lift
coefficient.

A further correlation example is presented in figure 9 where numerical re-
sults are compared with experimental data for a non-planar Lockheed boxplane
configuration. Again, the loading was obtained from lifting~surface theory.

As indicated, good agreement is obtained.

Optimum Load Correlations

In figure 10 the optimum loading is presented for an aspect ratio eight
monoplane as calculated from equation (28) using constant elements of .01(b/2)
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in width., Also shown is the classic optimum result for a monoplane - an
elliptical loading. The correlation can be seen to be very good. The error in
induced drag of the computed result was approximately 0.57%, which is consistent
with the results in figure 7.

In reference 2, an optimum loading for a wing with a winglet is presented
as derived from transformation theory. This solution is compared to the result
calculated using the present method in figure 1l1. Good agreement between the
two methods is obtained.

ILLUSTRATIVE USE OF METHOD

Taken together, the present numerical method provides a unique tool for
understanding the sources of induced drag and making configuration trade-offs
to achieve an overall aerodynamic as well as structurally optimum aircraft. An
illustration of using the method to provide additional understanding into the
basic sources and mechanisms of induced drag is presented in figure 12, where
the magnitude of the induced-drag components for a wing-winglet configuration
(fig. 4) with optimum load is presented. From the figure, it can be seen that
the induced-drag contribution from the wing on the winglet and -he winglet on
the winglet are of the same magnitude and cancel each otner. Tnis is, of
course, the result previously illustrated in figure 5.

As a result of design or structural constraints, the aircraft may not be
able to achieve the op !mur loading for minimum induced drag. The penalties
that incur from the use of non-optimum loadings can be quickly assessed using
the present method. This is illustrated in f.gure 13, where the winglet load-
ing for a wing-winglet configuration is varied. As can be seen the induced
drag is sensitive to certain types of changes (non-optimum 1) where it is not
to others (non-optimum 2).

The present method can also be used to quickly make configuration trade-
offs. This is illustrated in figures 14 and 15. 1In figure 14 the parametric
effect of wing additions on induced drag and on the wiug spanwise center-of-
pressure location as calculated from the present method are presented. If, for
instance, it was desired to find a configuration which would give the maximum
induced drag reduction for a minimum outboard shift in wing center of pressure,
this can quickly be determined by replotting the parametric data of figure 14
in the form of figure 15 and the result determined.

CONCLUDING REMARKS

A unified numerical method applicable to non-planar subsonic aircraft hcs
been developed for the purpose of calculating the induced drag for an arbitrary
loading or the optimum aircraft loading that gives minimum induced drag.
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Use of the numerical method has indi-ated that:
(1) the method is simple and easy to use

(2) 1induced drag and optimum loading results from the numerical
method correlate very well with non-planar solutions obtained
from more complex theories

(3) numerical induced-drag predictions are in good agreement with
experimental data for planar and non-planar configurations

(4) the numerical method provides both analysis and design capa-
bility which allows the designer to make rapid configuration
assessments and trade-offs for the purpose of achieving an
overall aerodynamic as well as structurally optimum aircraft.
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Figure 1.- Illustration of Munk's theorem 1.
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Figure 2.- Illustration of Munk's theorem II.
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(a) Drag due to wing on (b) Drag due to wing on
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Figure 4.- Sources of induced drag for a wing/winglet configuration.
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Figure 7.- Variation of efficiency for optimally loaded monoplane.
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Figure 8.- Induced drag for Lockheed ATT-95 aircraft.
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Figure 10.- Comparison of numerical and exact optimum
span loadings for a monoplane.
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Figure 12.- Illustration of induced drag calculations for
a wing/winglet configuration.
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Figure 13.- Effect of changes in winglet loading on the ind :ed drag
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Figure 14.- Basic theoretical effects due to wing additions.
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